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Abstract

The ultimate compressive strength of unstiffened plates is very important from the design and
safety viewpoint. However, the ultimate compressive strength of these panels will depend quite
significantly on the initial welding distortions and residual stresses. Currently, most of the
researches concerning the effect of welding distortions concentrate only on the maximum initial
distortion amplitude. However, many evidences indicate that the welding distortion shape
could also affect the ultimate compressive strength significantly. In this paper, we adopt
a combination of the elastic large deflection theory and the rigid-plastic analysis, proposed by
Paik and Pedersen and later was generalized by the present authors. Various factors including
the initial deflection shape which affect the ultimate compressive strength of unstiffened plates
are investigated. ( 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Unstiffened plates; Ultimate compressive strength; Elastic large deflection analysis;
Rigid—plastic analysis; Initial welding distortion shape; Residual stresses

Nomenclature

a plate length
A

0i
component of initial deflection function

A
j

component of total deflection function
b plate width
b
t

breadth of tensile residual stress
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D Et3/12(1!l2)
E Young’s modulus
F Airy’s stress function
M number of half-waves in the plate length direction for initial deflection
N maximum number of half-waves tried for determining the final total

deflection
m

up
number of half-waves of collapse mode for perfect plate

m
u

number of half-waves of collapse mode for imperfect plate
R

d
Strength reduction factor due to initial deflection only

R
r

Strength reduction factor due to residual stress only
t plate thickness
w total deflection function
w
0

initial deflection function
w
0.!9

maximum value of initial deflection function
a aspect ratio ("a/b)

b plate slenderness"b/tJp
0
/E

l Poisson’s ratio
g normalized residual stress ("!p

rc
/p

0
)

/
up

normalized ultimate strength of perfect plate ("p
up

/p
0
)

/
u

normalized ultimate strength of imperfect plate ("p
u
/p

0
)

/
x

!p
xav

/p
0

(positive value for compression)
t
0i

normalized value of A
0i

("A
0i
/t)

t
0.!9

normalized maximum value of initial deflection function ("w
0.!9

/t)
t
j

normalized value of A
j
("A

j
/t)

p
0

yield stress
p
rc

compressive residual stress (as negative value)
p
rt

tensile residual stress ("p
0
, as positive value)

p
up

ultimate strengths of perfect plate
p
u

ultimate strengths of imperfect plate
p
xav

average axial stress in x direction (negative value for compression)

1. Introduction

Unstiffened plates are the main structural components in ships and many other
structures. The ultimate strength of these elements is very important from the design
and safety viewpoint because the collapse loads of these elements can often act as an
indicator of the ultimate strength of the whole stiffened panel [1]. The problem has
been addressed for several decades with regard to ship structures [2,3]. However, up
to now, the solution to the problem is still not very satisfactory. Because of the
complexity of the problem, the most frequent answer to the method for determining
accurately the ultimate strength of plates is the use of finite element method (FEM).
FEM is very time consuming and this is not favored by designers and practical
engineers. Furthermore, although theoretically speaking, FEM could always provide
a solution of desired accuracy, ironically in practice, the results obtained from FEM
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Fig. 1. A simply supported rectangular plate subjected to uniaxial compression.

by different people are very diverse. Currently, there is no universal method for
analysts to prove whether one particular FEM result is correct. Therefore, empirical
design formulas are still preferred by the designers and vast amount of literature are
available [4,5]. Faulkner has made an early attempt towards this target [6] and many
others follow [7—13]. However, most of these empirical formulas are curve fitting in
nature and their accuracy and applicability depends on the databases used. Ideally,
the method should have some theoretical basis [5]. Mansour [3] proposed design
curves that include the effect of initial deformation using a generalized Marguerr’s
equations (5) and (6) to include orthotropic material properties. However, with this
method, a set of nonlinear equations needs to be solved. Furthermore, with the
application of the elastic large deflection theory only, the ultimate strength was not
defined.

Most of the researches concerning the effects of welding distortions concentrate
only on the amplitude. However, there are many evidences indicating that the welding
distortion shape could also affect the ultimate strength significantly [6—24]. Further-
more, it is reported that instead of the weakening effect, some initial deflection shape
may have strengthening effect on the ultimate strength [7]. However, the researches
dedicated to this problem are not adequate [6—24].

The purpose of this paper is to study the effects of welding distortions and residual
stresses on the ultimate compressive strength of unstiffened plates. In particular, the
effect of the initial deflection shape are extensively discussed.

2. Basic theory

The problem studied is a simply supported unstiffened plates subjected to uniaxial
compression, see Fig. 1. The basic approach adopted in this paper for studying these
effects is the one recently proposed by Paik and Pedersen [14] and generalized by the
present authors [15].
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2.1. Basic assumptions

The assumptions made in this development are:
(1) The initial deflection configuration can be approximated by the following Fourier

Series function [14]:

w
0
"

M
+
i/1

A
0i

sin
inx

a
sin

ny

b
(1)

where the number M will be selected depending on the complexity of the initial
deflection shape. In this paper, M"11.

(2) The elastic large deflection analysis and the rigid-plastic deflection analysis
are performed individually for each component of the initial deflection
function, i"1, 2,2M. The interaction effects between deflection components are
neglected.

(3) The initial deflection with only one component from Eq. (1) is given as

w
0
"A

0i
sin

inx

a
sin

ny

b
, (2)

and the possible total deflection corresponding to the above initial deflection is
assumed to take the following form [15]:

w"A
j
sin

jnx

a
sin

ny

b
(3)

where j is an integer to be determined according to Assumption (6), j is not
necessarily the same as i.

(4) The distribution of the residual stresses along the plate width is idealized as shown
in Fig. 2:

p
r
"G

p
rt

("p
0
) for 0)y)b

t
p
rc

(negative) for b
t
(y)b!b

t
p
rt

("p
0
) for b!b

t
(y)b

(4)

(5) For the rigid-plastic deflection analysis, only three modes of possible collapse
mechanisms (modes I, II and III [14]) are considered.

(6) For each initial deflection component i, j is a certain value to be determined by
varying j from 1 to N and the one which has the lowest intersection value between
elastic large deflection solution and the rigid-plastic solution (see Fig. 3) for the
applied stress is chosen. N is subjectively chosen. Normally the value of N"11 is
also adequate for practical application. Then the ultimate strength of the plate is
determined as the minimum intersection value among those estimated for indi-
vidual components of the initial deflection function.
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Fig. 2. Idealized welding-induced residual stress distribution.

Fig. 3. Combination of the elastic and the rigid plastic responses for determination of the ultimate
compressive strength.

2.2. Elastic large deflection analysis

The most general differential equations in which the initial deflection w
0

was also
included are given as follows [3,14]:

+4F"E[w2
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!w
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.w
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!w2
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0,yy

] (5)
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Introducing Eqs. (2) and (3) into Eq. (5), one can obtain Airy’s stress function F.
Applying the Galerkin’s method,
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]sin
jnx

a
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ny

b
dx dy"0. (7)

Substitution of Eqs. (2)— (4) and the expression for Airy’s stress function F into Eq. (7)
and through integration, a cubic equation for A

j
can be obtained. If we introduce the

following non-dimensional parameters:
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(8)

then the cubic equation can be written in the following form:

t3
j
#P .t

j
#Q"0 (9)

where
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(a4#j4)
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16b2
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d
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(10)

where d
ji

is defined as follows:

d
ji
"G

1 j"i

0 jOi .
(11)

The detailed derivation of Eq. (9) and its solution are given in Ref. [15]. When the
initial deflection and residual stresses are zero, then Eq. (9) has positive root only
when P(0. From this condition, it can be derived:

b*
n

J3(1!l2)
"k

u
"1.90 (12)

where k
u
is the von Karman constant. This means that for a perfect plate, i.e. without

any initial deflection and residual stresses, the ultimate strength /
up

only starts to
decrease when b'k

u
. Furthermore, for a given b, from P"0 we can derive the same

critical buckling strength formula as that from elastic small deflection theory

/
xcr

"

n2

12(1!l2)b2
)
( j2#a2)2

j2.a2
. (13)

2.3. Rigid—plastic solution

Assuming a possible collapse mechanism and by equating the internal energy to the
external work, one can derive a rigid-plastic solution. This solution is given in Ref.
[14] for the present problem. We rewrite them in terms of the non-dimensional
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parameters:

t
j
"G

1!/2
x

/
x

)A
4

J16!15./2
x

#

a/j!1

J4!3./2
x

for a'j

1!/2
x

/
x

)
4

J16!15./2
x

for a"j

a
2j!a

)
1!/2

x
/
x
A

4

J16!15./2
x

#

j

2a
!

1

2B for a(j

(14)

2.4. Determination of the ultimate strength

The procedure to determine the ultimate strength of the unstiffened plates is
described under Assumption (6) above. Based on this procedure, a computer program
is written in Fortran language. The basic input data to this program is a, b, g,
t
0i

(i"1, 2,2, M). Using this program, the ultimate strength of an unstiffened plate
with a combination of any kind of initial deflection and any level of residual stresses
can be calculated. In general, the ultimate strength /

u
and the final failure shape m

u
of

an imperfect plate will be a function of a, b, g, i, and t
0i
. That is,

/
u
"/

u
(a, b, g, i, t

0i
)

m
u
"m

u
(a, b, g, i, t

0i
) .

(15)

In this paper, the following interesting problems are investigated based on the
parametric study using this program:
(1) Effect of a and b on /

up
and m

up
.

(2) Effect of the initial deflection shape i on /
u
and m

u
.

(3) Effect of the initial deflection amplitude t
0

on /
u
and m

u
.

(4) Effect of the residual stresses g on /
u

and m
u
.

These problems will be addressed in the next section.

3. Discussion on various factors affecting the ultimate strength

3.1. Effect of a and b on the ultimate strength of perfect plates /up and mup

Before we discuss the effects of welding distortions and residual stresses on the
ultimate strength, it would be quite interesting to know the ultimate strength of
a perfect plate. By perfect plate we mean that both residual stresses and initial
deflection are zero. Therefore, the only parameters which might affect the ultimate
strength are a and b. The results are shown in Fig. 4. It can be seen that a has
negligible effect on /

up
and therefore only b is the significant parameter for defining

the ultimate strength of an unstiffened perfect plate. This is consistent with the current
literature [6].
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Fig. 4. Effect of a and b on /
up

.

The least-squares method is used to correlate the mean ultimate strength as
a function of b and the result is

/
up
"G

1 if b)1.9

0.08#
1.09

b
#

1.26

b2
if b'1.9.

(16)

As far as this type of formula is concerned, many can be found in the literature.
Table 1 presents some of them.

Fig. 5 is a comparison between the present calculation and some of the existing
formulas. It should be pointed out that most of the formulas in Table 1 allow some
degree of initial distortions and residual stresses. Only Carlsen [19], Guedes Soares [1]
and Ueda [12] have presented the empirical formulas for /

u
based on the experimental

data in which t
0

and g are explicitly treated. If we set them to be zero, then /
up

can be
obtained from these formulas. Only these results are plotted in Fig. 5. It can be seen that
the agreement with the experimentally based formulas is generally good.

In contrast to the study on ultimate strength, the ultimate failure shape received
little attention [7,12,14]. With the current method, this can also be determined. From
a comprehensive parametric study, it was found that m

up
"1 when b)1.9 and a and

b have no effect. However, when b'1.9, both a and b have significant effect on
m

up
and the results are shown in Fig. 6. The first figure shows for a given value of

b"2, how m
up

changes with a. The second figure shows for fixed values of a, how
m

up
changes with b. It can be seen from this figure that for some values of a, m

up
jumps

once for the range 2)b)4 while for other values of a, m
up

jumps twice. The third
figure shows the value of b at which the first jump occurs while the fourth figure shows
the value of b at which the second jump occurs.

3.2. Effect of initial deflection shape i and amplitude t
0

on /u and mu

Let us first study the typical case of a"3, b"2.5. For this case m
up
"4. The results

are shown in Fig. 7. The first figure shows the effect of initial deflection shape
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Table 1
A summary of the formulas for the ultimate strength of unstiffened plates

Proposer Formulas

Von Karman (1932) /
up
"G

1 if b)1.9

1.9

b
if b'1.9

Winter (1940) /
u
"G

1 if b)1.27

1.9

b
!

0.8

b2
if b'1.9

Frankland (1940) /
u
"G

1 if b)1.0

2.25

b
!

1.25

b2
if 1(b)3.5

1.9

b
ifb'3.5

Gerand (1957) /
u
"G

1 if b)1.51

1.42

b0.85
if b'1.51

Faulkner (1975) /
u
"G

1 if b)1.0

2

b
!

1

b2
if b'1.0

Carlsen (1977) /
u
"A

2.1

b
!

0.9

b2BA1!
0.75t

0
b B(1!g)

Hughes (1983) m"1#
2.75

b2

/
u
"

1

4 A1.6#m!Sm2!
10.4

b2 B

DNV (1987) /
u
"G

1 if b)1.0

1.8

b
!

0.8

b2
if b'1.0

Smith (1988) /
u
"0.23#

1.16

b
!

0.48

b2
#

0.09

b3

Ueda (1992) (a) g"0

(i) 0.8)b)2.0

/
u
"(!2.431t2

0
#1.6826t

0
!0.2961)(b2!4.0)

#(7.2745t2
0
!4.7431t

0
#0.6709)(b!2.0)#z

1
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Table 1 (continued)

Proposer Formulas

z
1
"(!0.3597t2

0
#0.1748t

0
#0.8598)/(2.2432t

0
#1.3322)

#0.0373t
0
#0.2481

(ii) 2.0)b)3.5

/
u
"(!0.3597t2

0
#0.1748t

0
#0.8598)/(b#2.2432t

0
!0.6678)

#0.0373t
0
#0.2481

Ueda (1992) (b) g"0.11

(i) 0.8)b)1.6

/
u
"(!0.398t2

0
#0.4339t

0
!0.1342)(b2!2.56)

#(1.0814t2
0
!0.7551t

0
#0.1020)(b!1.6)#z

2
z
2
"(0.4974t2

0
#0.8281t

0
#1.0171)/(2.7942t

0
#1.2908)!0.1849t

0
#0.1571

(ii) 1.6)b)3.5

/
u
"(0.4974t2

0
#0.8281t

0
#0.0171)/(b#2.7942t

0
!0.3902)!0.1849t

0
#0.1571

Ueda (1992) (c) g"0.25

(i) 0.8)b)1.5

/
u
"(!0.3317t2

0
#1.6314t

0
!0.2656)(b2!2.25)

#(0.5369t2
0
!0.7798t

0
#0.2854)(b!1.5)#z

3
z
3
"(0.292t2

0
#1.2936t

0
#0.7471)/(2.897t

0
#1.1189)

!1.2715t
0
#0.2057

(ii) 1.5)b)3.5

/
u
"(0.292t2

0
#1.2936t

0
#0.7471)/(b#2.897t

0
!0.3811)!0.2715t

0
#0.2057

Guedes Soares (1992) /
u
"(/

b
B
b
)(R

r
B
r
)(R

d
B
d
)

/
b
"

2

b
!

1

b2
, B

b
"1.08, R

r
"1!

D/
b

1.08/
b

, B
r
"1.07,

R
d
"1!(0.626!0.121 b)t

0
,

B
rd
"0.76#0.148 g/(1#g)#0.24 t

0
#0.1b

D/
b
"g

E
t

E
0

,
E
t

E
0

"GA
14.5b2

52.4#b4B
2

for b(2.69

1.0 for b*2.69

Present /
u0
"G

1 for b)1.9

0.08#
1.09

b
#

1.26

b2
for b'1.9
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Fig. 5. A comparison of the present calculation with some existing formulas.

Fig. 6. Effect of a and b on the number of half-waves of collapse mode for perfect plates.

i (number of half-waves) for a given value of amplitude on the ultimate strength. It can
be seen that when amplitude is small (t

0
)0.2), then only those components close to

m
up

will have significant effect on the ultimate strength while for other components,
they have small effect. As t

0
increases, the number of components which affect the

ultimate strength significantly also increases. The second figure shows the effect of
initial deflection amplitude for a given shape on the ultimate strength. It can be seen
that when i"1, 2 and 3, the ultimate strength will monotonically decrease with the
amplitude. When i equals 4 and 5, the relation becomes a bit complicated.
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Fig. 7. Effect of initial deflection shape and amplitude on the ultimate strength for the special case of a"3
and b"2.5.

It is very interesting to see that for this case if the initial deflection has only one
half-wave, i.e. i"1, then the initial deflection almost has no effect on the ultimate
strength.

In general, it was found that if both the amplitude and the initial deflection
component number are assumed to be high, the strength will decrease sharply.
However, from observations of data on measured initial deflection, it can be said that
as i increases A

0i
will decrease, that is, when the initial deflection component number

i is high, the corresponding amplitude will be small. Therefore, we need to establish
a reasonable relation between A

0i
and i based on practical measurements, which is

studied next.
In Ref. [14], 33 cases of unstiffened plates with measured initial deflections have

been given. We have plotted out a normalized initial deflection component amplitude
with the component number in Fig. 8. It can be seen clearly that generally speaking,
the normalized component amplitude will decrease as component number increases.
Based on the mean curve for the 33 cases, using the least-squares method, the
following empirical formula can be established:

t
0i
"t

0.!9
)
0.756

i1.565
. (17)

With this empirical formula, the ultimate strength can be estimated based on informa-
tion of t

0.!9
only. The accuracy of this formula is also checked with the 33 examples.

The results are shown in Fig. 9a.
Fig. 9b and c also show the results of a correlation study based on the 33 cases. It

can be stated that the correlation between t
0.!9

and /
u
is poor while the correlation

between t
0(mu)

and /
u
is good. This indicates that the classical use of t

0.!9
without

any consideration of the deflection shape such as Ref. [1,19,21] may be conservative
and this deficiency can be overcome by using the empirical formula (17) established in
this paper although the same information is used.

Based on Eq. (17), we used the present program to calculate the ultimate strengths
of moderate level of initial deflection (Eq. (18)) and residual stresses (g"0.1). The
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Fig. 8. Normalized initial deflection amplitude as a function of the component number.

results are compared with other empirical formulas in Fig. 10. It can be seen that the
agreement is good, in particular, when b'2.

t
0.!9

"G
0.1b2 1)b)2.5

0.25b 2.5(b)4.
(18)

We also used Eq. (17) to study the effect of maximum initial deflection on the ultimate
strength and the results are shown in Fig. 11. It can be seen that in addition to t

0.!9
,

both a and b have some effect on the strength reduction factor. However, in most of
the current empirical formulas, the effect of a is usually ignored except Refs. [22—24].
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Fig. 9. Correlation of the ultimate strength /
u
with (a) t

0.!9
with Eq. (17); (b) and (c) t

0.!9
only or t

0
(m

u
).

Fig. 10. A comparison of the present program with existing formulas for medium initial deflection and
residual stresses.

Based on our results, the ultimate strength of a plate is presented in the following
format:

/
u
"/

up
R

d
R

r
(19)

where R
d
and R

r
are strength reduction factors due to initial deflection and residual

stresses, respectively. Using the least-squares approach, the following formula is
established for R

d
based on the calculational results.

R
d
"1!0.2433 f (a)g(b)t0.911

0.!9
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Fig. 11. Effect of a, b, and t
0.!9

on the strength reduction factor R
d
: (a) a is averaged, (b) b is averaged.

where

f (a)"2.05!1.376a#0.366a2!0.0345a3 (20)

g(b)"G
2.28!2.568b#1.288b2 for 1.0)b)1.9
8.191!4.224b#0.522b2 for 1.9(b)2.5
4.593!2.162b#0.273b2 for 2.5(b)4.0.

The goodness of the fit of Eq. (20) is shown in Fig. 12. Using Eq. (17), the
final deflection shape m

u
is mainly dominated by a and b, but t

0.!9
also has some

effect.

3.4. Effect of residual stresses g on /u and mu

The effect of g on /
u
is shown in Fig. 13. It can be seen that a has little effect on the

strength reduction factor R
r

and so we average the values for a. Using the least-
squares method, we can derive the following expression for R

r
:

R
r
"1!0.46(b!1.5)0.275g0.725 . (21)

The parameter g does have some effect on m
u
but generally speaking, this is small.
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Fig. 12. Goodness of the fit of Eq. (20) to the calculational results.

Fig. 13. Effect of a, b, and g on the strength reduction factor R
r
: (a) b"2.5; (b) a is averaged.

3.5. Application of the present results in design and analysis

The method introduced in this paper together with many calculated results can be
directly applied in the design process or for analyzing actual unstiffened plates. If an
unstiffened plate is given with measured residual stresses and initial deflection, then
one can directly apply the present method to predict its ultimate compressive strength.
The method is very efficient and it takes only seconds to run a case in a personal
computer. From the comparisons with other experimentally-based empirical formulas
given above, the results from the present method are quite accurate. Furthermore, if
one does not want to develop a program, one can simply use the formulas, Eq. (19)
together with Eqs. (16), (20) and (21) to estimate the ultimate strength. The results will
also be quite accurate. If one is required to design a plate, then only the maximum
value of initial deflection function is normally specified. With this value, one can use
Eq. (17) to calculate the amplitude for each component and then apply the present
detailed method to calculate the ultimate strength. Alternatively, he can also directly
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use the approximate formulas to estimate the strength based on the specified levels of
maximum initial deflection and residual stresses.

4. Summary and conclusions

The ultimate compressive strength of ship panels will depend quite significantly on
the initial welding distortions and residual stresses. Evidence indicates that the
welding distortion shape may also affect the ultimate compressive strength signifi-
cantly. In this paper, we adopt a combination of the elastic large deflection theory and
the rigid-plastic analysis to study the impact of various factors including the initial
deflection shape on the ultimate compressive strength of unstiffened plates. Through
this investigation, the following conclusions can be drawn:
(1) The simplified method recently proposed by Paik and Pedersen [14] and general-

ized by the present authors [15] is a very powerful tool in predicting the ultimate
compressive strength of ship panels. The results obtained from this method are
well comparable to the experimental data-based empirical formulas. The advant-
age of this method over the curve fitting empirical formulas is that this method is
based on a sound theory of mechanics, but it still retains the simplicity and
possible application in design.

(2) Through a comprehensive parametric study, it is proved that for a perfect plate,
the effect of the aspect ratio a on ultimate strength is negligible. However, it will
quite significantly affect the final total deflection shape at collapse.

(3) Based on this method, it was confirmed that in addition to the amplitude, the
initial deflection shape (i.e. the number of half waves) does have a significant
effect on the ultimate strength. Generally speaking, only those initial deflection
whose shape is close to the final total deflection plays a significant role. The rest of
shapes of the initial deflection may have negligible or small effect on the ultimate
strength.

(4) Through a detailed correlation study based on the 33 cases provided in Ref.[14], it
is also confirmed that the correlation between the maximum initial deflection
amplitude and the ultimate compressive strength is generally poor and only the
amplitude of the initial deflection component which has the same form as the final
total deflection plays a significant role in ultimate strength. This is a further
evidence of the applicability of the present theory. An empirical formula is
proposed for calculating the amplitude of the initial deflection component based
only on information on the maximum initial deflection amplitude.

(5) Based on the proposed empirical formula, the effect of the maximum initial
deflection amplitude on the ultimate strength is studied and it is found that
in addition to the maximum initial deflection amplitude, both a and b have
some effect on the strength reduction factor R

d
. An empirical formula is

proposed.
(6) However, a has negligible effect on the strength reduction factor associated with

the residual stress, R
r
. Based on the comprehensive parametric study, an empirical

formula for R
r
is also proposed.
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