您現(xiàn)在的位置: 中國科技創(chuàng)新網(wǎng) > 文章中心 > 創(chuàng)新人物百科 > 基礎(chǔ)科學(xué) > 文章正文
專家信息 科學(xué)研究 論文專著 榮譽獎勵

專家信息:


祝世寧,1949年12月生于江蘇省南京市。現(xiàn)任南京大學(xué)教授、博士生導(dǎo)師,南京大學(xué)物理學(xué)院院長,江蘇省物理學(xué)會理事長。

教育及工作經(jīng)歷:

1968年南京金陵中學(xué)高中畢業(yè)。

1981年畢業(yè)于淮陰師范學(xué)院。

1988年在南京大學(xué)獲碩士學(xué)位。

1996年在南京大學(xué)獲博士學(xué)位。

2007年當(dāng)選為中國科學(xué)院院士。

科學(xué)研究:


研究方向:

1. 微結(jié)構(gòu)功能材料和物理;

2. 非線性光學(xué)、量子光學(xué)和激光物理。

承擔(dān)的科研情況:

1、倍頻、自倍頻光學(xué)超晶格LN、LT晶體及應(yīng)用研究(863項目);

2、光電功能晶體的微結(jié)構(gòu)設(shè)計及其物理(973項目);

3、光學(xué)超晶格中光參量及耦合參量過程的研究和應(yīng)用(基金重點);

4、“準(zhǔn)位相匹配和介電帶隙材料中光物理過程的研究”(教育部專項)。

科研成果:

1. Engineered ferroelectric domains for nonlinear optics, lasers and quantum optics:

LiNbO3 and LiTaO3 crystals belong to ferroelectrics with reversible spontaneous polarizations. All third-rank tensors pertaining to ferroelectrics, such as the nonlinear optic, piezoelectric and electro-optic tensors, could be modulated along with domain inversion. In the 1990’s, groups in Japan, United States, Israel and China independently developed electrical field poling methods to prepare optical superlattices (e.g., QPM crystals or PPLN, PPLT etc.). Dr. Zhu’s group in Nanjing University was the first one in China, and one of first groups in the world, involved in the studies of such ferroelectric domain engineering [JAP 77, 5481 (1995)]. With this technique, Zhu and his group successfully fabricated different kinds of optical superlattices, such as quasi-periodic, dual-periodic, aperiodic, and even with predesigned 2D patterns [APL. 67, 320(1995)]. This breakthrough makes it possible for mass production of various specially designed optical superlattices, paving the way for practical device applications in constructing prototype lasers and ultrasonic devices, and in studying QPM nonlinear optics, laser and quantum optics. In the Symposium of 55 Years of Ferroelectrics held in Leeds in 2003, Prof. Fousek of the Technical University of Liberec of Czech Republic, described the domain engineering as: “…domain engineering became a very appealing concept … succeeded in producing a periodic domain pattern in LiNbO3 and proved its efficiency in non-linear optics.… Zhu et al. initiated key progress in this field by producing a domain pattern whose geometry corresponds to the Fibonacci sequuence.”. In addition, Zhu et al. developed a new imaging method to directly observe the ferroelectric domain structures on the surface of optical superlattice without etching or surface coating by using environmental scanning electron microscopy in the secondary electron emission mode. The new method can nondestructively provide domain contrast image at submicron resolution [PRL 79, 2558 (1997)].

2. Studies of OSL for nonlinear optics, all solid-state lasers and quantum optics:

i) Quasi-periodic OSLs and third-harmonic generation: Zhu and his co-workers introduced the structures of quasi-crystal into nonlinear optic crystals, thus extending the QPM theory, proposed by Bloemburgen et al. in 1962, to account for the multi-wavelength coupled parametric processes and high-order harmonic generation in a single quasi-periodic OSL by multi-QPM (MQPM), which is a totally new effect in nonlinear optics. Based on the theory, they designed and prepared the first quasi-periodic OSL that led to the third-harmonic generation from a crystal with efficiency as high as 23% [Science 278, 843 (1997)] as well as simultaneous multi-wavelength second-harmonic generations (SHG) with efficiencies ranging from 5% to 20% [PRL 78, 2752 (1997)]. The theory and experiments established the fact that high-order harmonic generations could be effectively realized by the coupled parametric processes. It is the quasi-periodic OSLs that make it possible to realize this novel effect in a single and compact OSL. Subsequently, MQPM was extended to dual-periodic, aperiodic and even 2D OSLs to achieve the multi-wavelength or multi-beam laser outputs from a single nonlinear crystal.

ii) QPM-enhanced nonlinear scattering and diffraction in OSLs: It is known that nonlinear interactions of lasers with matter could show enhanced second-harmonic generation and stimulated Raman scattering when phase-matching occurs. While QPM has proven to be useful for effective harmonic generations and parametric processes in OSLs, its role in scattering interaction was not noticed previously. Zhu et al. have shown that both elastic and non-elastic scatterings could be dramatically enhanced in the nonlinear mediums through QPM processes. The conical beams recorded the spatial distribution of the elastic scattering signal, which discloses the structure information and the symmetry of the 2D OSL [PRL. 93, 133904 (2004)]. Furthermore, Raman scattering could be significantly enhanced in an OSL by QPM parametric processes [PRB 72, 064307 (2005)]. The result might be used to study elementary excitations in condensed matters as well as making new types of laser devices.

iii) Transforming spatial entanglement using domain-engineering technique: Entanglement is one of the most surprising consequences of quantum mechanics, and has attracted a great deal of attention now due to the applications in quantum information and computation. The spontaneous parametric down conversion (SPDC) is the most important approach for generating the photon-entangled state. QPM and domain-engineering technique open a new way to generate such interesting entanglement. Zhu and his students studied the spatial correlation of two-photon entangled state produced in a transversely engineered QPM grating by SPDC. The far-field diffraction-interference experiment reveals that the transverse modulation of the domain patterns defines the spatial mode function of the two-photon state. This result offers a new approach to prepare the novel type of two-photon state with unique spatial entanglement by using this domain-engineering technique [PRL 101, 233601 (2008)]. Moreover, by combining the longitudinal and transverse engineering of QPM grating, one could construct the space-momentum, time-energy, and spatial shape entanglement, and prepare the hyper-entangled state for their applications in quantum optics. Moreover, the continuous-variable (CV) entanglement by cascaded nonlinear interactions in optical superlattice was systemically studied by Zhu et al. in theory as well. The result shows that multi-mode CV entanglement could be generated in an predesigned OSL [PRA 74, 042332 (2006)], which is usually not possible to realize in a conventional nonlinear crystal.

3. All-solid-state lasers based on OSLs:

OSL is a kind of novel frequency conversion crystals for high performance lasers. Zhu et al. have designed and prepared various OSLs with different periodicity, quasi-periodicity, dual-periodicity, aperiodicity and 2D structures to meet the phase-matching conditions of various SHGs and coupled parametric processes. Using these OSLs together with Nd:YAG or Nd:YVO4 laser crystals and acoustic-optical Q-switch, they have realized a series of all-solid-state lasers which effectively operate at one color, multi colors, tunable wavelength or quasi-white-color output. Some prototype lasers have already been set up in the laboratory, for example, a blue light laser (440nm@400mW), a tunable laser, a red-blue and a green-violet dual-color lasers, etc [OE 17, 4289 (2009); 18241 (2009); APL. 89, 181101 (2006)). Based on these progresses, they designed and successfully built an all-solid-state RGB laser with a quasi-white-light output of 1W [OL 33, 408 (2008)], which is more than 10 times higher than the commercially available He-Kr gas RGB three-color laser of 50mW output. The editor of <> made a comment on the work in World News column: “The high-power all-solid-state RGB laser light source using multi-wavelength QPM frequency conversion based on an optical superlattice is compact, efficient, robust and convenient, and will have potential applications in LBPD. Besides this, multi-wavelength laser devices based on an optical superlattice will have other applications such as laser therapy, for both diagnosis and cure.” (<>, April, 2008). Up to now they have had six Chinese patents and two US patents authorized.

In addition to the above mentioned three aspects, Dr. Zhu and his co-workers have made important contributions on metamaterials, acoustic superlattice and ion-type acoustic crystals as well, especially on “Coupled magnetic plasmons in metamaterials” recently [Nature Photonics. 3,157 (2009)]. They discovered that the current model of effective media does not take into account the interactions between magnetic elements in magnetic metamaterials, thus, the effective properties of the bulk metamaterials are only considered as an “averaged effect” of the uncoupled resonators. In fact, there is interaction between the magnetic resonators in magnetic metamaterials and such an interaction could lead to some novel phenomena and interesting applications that do not exist in the conventional uncoupled metamaterials. In a coupling system the multiple discrete resonances can be extended to form a continuous frequency band by strong coupling. This kind of broadband and tunable magnetic metamaterials may have interesting applications, such as the low loss sub-wavelength waveguide, negative refraction and nonlinear optics effects etc [Phys. Status Solidi B. 246,1397 (2009)].

發(fā)明專利:

美國專利:

1. Design of optical superlattice to realize third-harmonic generation and multi-wavelength laser output and its applications in the all-solid-state lasers (美國發(fā)明專利)

發(fā)明人: 祝世寧 何京良 朱永元 王慧田 閔乃本 等

專利號: US6,714,569 B2.

2.Laser display radiation source and method(美國專利)

發(fā)明人:孔慶昌 高志達(dá) 塗時雨 祝世寧

專利號:US 7,298,545 B2

國內(nèi)專利:

1 基于間歇振蕩雙波長激光和級聯(lián)超晶格激光器的設(shè)置方法 胡小鵬; 祝世寧; 何京良; 劉輝; 閔乃本 南京大學(xué) 2008-07-30

2 室溫制備具有周期電疇的LT、摻雜LN晶體及應(yīng)用 祝世寧; 朱永元; 閔乃本 南京大學(xué) 1996-06-12

3 非臨界位相匹配的光波導(dǎo)材料及其制法和應(yīng)用 劉俊民; 朱永元; 祝世寧; 劉治國; 閔乃本 南京大學(xué) 1996-12-18

4 一種在紫外吸收材料表面制作光柵的方法及其制品 駱桂蓬; 祝世寧; 劉治國; 朱永元; 葛傳珍; 陸亞林; 閔乃本 南京大學(xué) 1997-12-31

5 準(zhǔn)周期微米超晶格的制備方法及其在激光變頻方面的應(yīng)用 閔乃本; 朱永元; 祝世寧 南京大學(xué) 1998-02-04

6 準(zhǔn)位相匹配光學(xué)參量過程中的周期加場電調(diào)諧方法及其應(yīng)用 祝世寧; 許祖彥; 閔乃本; 陸延青; 駱桂蓬; 徐瑤; 何京良; 孔羽飛 南京大學(xué) 1999-04-07

7 雙周期超晶格及其在激光變頻中的應(yīng)用 朱永元; 祝世寧; 秦亦強; 劉照偉; 劉輝; 王惠田; 何京良; 閔乃本 南京大學(xué) 2001-03-21

8 準(zhǔn)周期結(jié)構(gòu)的介電體超晶格材料、設(shè)置制備方法 朱永元; 祝世寧; 秦亦強; 張超; 陳延彬; 王惠田; 何京良; 閔乃本 南京大學(xué) 2001-04-11

9 以超晶格為變頻晶體的全固態(tài)紅、藍(lán)雙色激光器 祝世寧; 何京良; 朱永元; 王惠田; 羅國珍; 閔乃本 南京大學(xué) 2001-08-01

10 實現(xiàn)準(zhǔn)位相匹配及相關(guān)非線性光學(xué)過程非周期光學(xué)超晶格設(shè)計方法 劉輝; 祝世寧; 朱永元; 閔乃本 南京大學(xué) 2003-03-12

11 超晶格全固態(tài)紅、黃、綠三色激光器的設(shè)置方法 祝世寧; 何京良; 廖軍; 劉輝 南京大學(xué) 2003-08-06

12 超晶格全固態(tài)紅、黃、綠、藍(lán)四色激光器的設(shè)置方法 何京良; 廖軍; 劉輝; 祝世寧 南京大學(xué) 2003-08-06

13 SiO2襯底上Nd:YVO4光波導(dǎo)薄膜器件及制備 李錕; 祝世寧; 王飛燕; 朱永元 南京大學(xué) 2004-04-07

14 以多通道倍頻周期超晶格為變頻晶體的固體藍(lán)光激光器 祝世寧; 胡曉朋; 李紅霞; 徐平 南京大學(xué) 2004-04-28

15 表面等離子體誘導(dǎo)光子共振隧穿型一維光子帶隙結(jié)構(gòu)的設(shè)置方法及裝置 袁長勝; 湯亮; 陳延峰; 祝世寧; 閔乃本 南京大學(xué) 2004-09-08

16 連續(xù)漸變周期全介質(zhì)寬帶全向反射器的設(shè)置方法及裝置 袁長勝; 湯亮; 陳延峰; 祝世寧; 閔乃本 南京大學(xué) 2004-09-08

17 以級聯(lián)超晶格為變頻晶體的高效全固態(tài)準(zhǔn)白光激光器的設(shè)置方法 祝世寧; 李紅霞; 王慧田; 徐平; 何京良; 朱永元; 呂鵬; 閔乃本 南京大學(xué) 2005-11-09

18 以化學(xué)計量比鉭酸鋰超晶格為變頻晶體的光參量振蕩激光器 祝世寧; 高志達(dá); 章晨; 孔慶昌; 塗時雨 南京大學(xué) 2006-10-11

19 紅綠藍(lán)彩色激光顯示光源的制備方法 高志達(dá); 祝世寧; 塗時雨; 孔慶昌 南京大學(xué) 2007-01-24

20 鐵電光學(xué)超晶格集成單電極控制極化的制備方法 謝臻達(dá); 徐平; 祝世寧; 趙剛; 王雯 南京大學(xué) 2007-05-30

21 一種無腔型的三元色激光器 許祖彥; 徐瑤; 劉嶸; 孔羽飛; 張恒利; 何京良; 房曉俊; 陳毓川; 朱永元; 陸延青; 祝世寧; 閔乃本 中國科學(xué)院物理研究所; 南京大學(xué) 1999-07-21

22 一種自鎖模激光器 潘淑娣; 祝世寧 南京大學(xué) 2009-04-22

23 一種基于介電體超晶格產(chǎn)生高頻超聲波的方法 尹若成; 何程; 陳延峰; 盧明輝; 陸延青; 祝世寧; 朱永元; 閔乃本 南京大學(xué) 2009-09-02

24 2.12微米鎖模激光器 潘淑娣; 祝世寧 南京大學(xué) 2009-11-04

論文專著:


在國際學(xué)術(shù)刊物上發(fā)表論文200余篇,在國內(nèi)學(xué)術(shù)刊物上發(fā)表論文50余篇:

一、 80 Selected Publications (from more than 200 papers):

1. T.Q. Li, H. Liu, T. Li, S.M .Wang, J.X. Cao, Z.H. Zhu, Z.G. Dong, S.N. Zhu, and X. Zhang, “Suppression of radiation loss by hybridization effect in two coupled split-ring resonators”, Phys. Rev. B 80, 115113 (2009).

2. T. Li, R.X. Ye, C. Li, H. Liu, S.M. Wang, J.X. Cao, S.N. Zhu, and X. Zhang, “Structural-configurated magnetic plasmon bands in connected ring chains”, Optics Express 17, 11486 (2009).

3. H. Liu, Y.M. Liu, T. Li, .S.M. Wang, S.N. Zhu, X. Zhang, “Coupled magnetic plasmons in metamaterials”, Phys. Status Solidi B. 246, 1397 (2009).

4. Z.H. Zhu, H. Liu, S.M. Wang, T. Li, J.X. Cao, W.M. Ye, X.D. Yuan and S.N. Zhu, “Optically pumped nanolaser based on two magnetic plasmon resonance modes”, Appl. Phys. Lett. 94, 103106 (2009).

5. N. Liu, H. Liu, S.N. Zhu and H. Giessen, “Stereometamaterials”, Nature Photonics. 3, 157 (2009).

6. H. Liu, T. Li, Q.J. Wang, Z.H. Zhu, S.M. Wang, J.Q. Li, S.N. Zhu, Y.Y. Zhu and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators”, Phys. Rev. B. 79, 024304 (2009).

7. P Xu, JF Wang, C Li, ZD Xie, XJ Lv, HY Leng, JS Zhao and SN Zhu, “Simultaneous optical parametric oscillation and intracavity second-harmonic generation based on a hexagonally poled lithium tantalite”, Optics Express 17, 4289 (2009).

8. P Xu, LN Zhao, XJ Lv, J Lu, Y Yuan, G Zhao and SN Zhu, “Compact high-power red-green-blue laser light source generation from a single lithium tantaiate with cascaded domain modulation”, Optics Express 17,9509(2009)

9. XJ lv, LN Zhao, J Lu, G Zhao, H Liu, YQ Qin and SN Zhu, “Poling quality evaluation of optical superlattice using 2D Fourier transform method”, Optics Express 17,18241 (2009)

10. HY Leng, JF Wang, YB Yu, XQ Yu, P Xu, ZD Xie, JS Zhao and SN Zhu, “Scheme to generate continuous-variable quadripartite entanglement by intracavity down-conversion cascaded with double sum-frequency generations”, Phys.Rev. A, 79, 032337 (2009)

11. JX Cao, H Liu, T Li, SM Wang TQ Li, SN Zhu and X Zhang, ”Steering polarization of infrared light through hybridization effect in tri-rod structure”, J. Opt. Soc. Am. B 26 B96(2009)

12. Dong ZG, Liu H, Li T, Zhu ZH, Wang SM, Cao JX, Zhu SN, and Zhang X, “Modeling the directed transmission and reflection enhancements of the lasing surface plasmon amplification by stimulated emission of radiation in active metamaterials”, Phys. Rev. B. 80, 235116(2009)

13. Y. Zhang, Z. D. Gao, Z. Qi, SN Zhu, and N. B. Ming, “Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguides”, Phys. Rev. Lett., 100, 163904 (2008);

14. XQ Yu, P. Xu, ZD Xie, JF Wang, H. Y. Leng, J. S. Zhao, S. N. Zhu and N. B. Ming, “Transforming spatial entanglement using domain-engineering technique”, Phys. Rev. Lett., 101, 233601 (2008);

15. X. P. Hu, G. Zhao, Z. Yan, X. Wang, Z. D. Gao, H. Liu, J. L. He, S. N. Zhu, “High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd:YAG laser with a cascaded LiTaO3 superlattice”, Opt. Lett. 33, 408 (2008);

16. Y. B. Yu, S. N. Zhu, X. Q. Yu, P. Xu, J. F. Wang, Z. D. Xie, and H. Y. Leng, “Continuous-variable pair-entanglement frequency comb generated from an optical superlattice by enhanced Raman scattering”, Phys. Rev. A 77, 032317 (2008);

17. D. Y. Lu, H. Liu, T. Li, S. M. Wang, F. M. Wang, S. N. Zhu, and X. Zhang, “Creation of a magnetic plasmon polariton through strong coupling between an artificial magnetic atom and the defect state in a defective multilayer microcavity”,Phys. Rev. B 77, 214302 (2008);

18. S. M. Wang, T. Li, H. Liu, F.M. Wang, S. N. Zhu, and X. Zhang, “Magnetic plasmon modes in periodic chains of nanosandwiches”, Opt. Express 16, 3560 (2008);

19. T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, “Magnetic resonance hybridization and optical activity of microwaves in a chiral Metamaterial”, App. Phys. Lett. 92, 131111 (2008);

20. S. D. Pan, Y. Yuan, L. N. Zhao, X. J. Lv, S. N. Zhu, “Experimental realization of broadband parametric generation in a quasi-periodically poled LiTaO3”, Opt. Express, 16, 18616 (2008);

21. P. Xu, Z. D. Xie, J. S. Zhao, H. Y. Leng, X. Q. Yu, J. F. Wang, S. N. Zhu, “Frequency self-doubling optical parametric amplification: noncollinear red–green–blue light-source generation based on a hexagonally poled lithium tantalite”, Opt. Lett., 33, 2791 (2008);

22. S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, X. Zhang, “Selective switch made from a graded nanosandwich chain”, Appl. Phys. Lett., 93, 233102 (2008);

23. ZG Dong, SY Lei, MX Xu, H Liu, T Li, FM Wang, and SN Zhu, “Negative index of refraction in metallic metamaterial comprising split-ring resonators”, Phys. Rev. E 77, 056609 (2008).

24. Zheng-Gao Dong, Ming-Xiang Xu, Hui Liu, Tao Li, and Shi-Ning Zhu,“Omnidirectional magnetic-resonance transmission and its elimination in a metallic metamaterial comprising rings and plates”, Phys. Rev. E 78, 066612 (2008).

25. ZG Dong, H Liu, T Li, ZH Zhu, SM Wang, JX Cao, SN Zhu, and X. Zhang,“Resonance amplification of left-handed transmission at optical frequencies by stimulated emission of radiation in active metamaterials”, Optics Express 16, 20975(2008 ).

26. ZG Dong, MX Xu, SY Lei,H Liu, T Li, FM Wang, and SN Zhu, “Negative refraction with magnetic resonance in a metallic double-ring Metamaterial”, Appl. Phys. Lett. 92, 064101 (2008).

27. F. M. Wang, H. Liu, T. Li, S. M. Wang, and S. N. Zhu, “Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains”, Appl. Phys. Lett. 91, 133107 (2007);

28. H. Liu, D.A. Genov, D.M. Wu, Y.M. Liu, Z.W. Liu, C. Sun,S.N. Zhu, X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic Nanostructures”, Phys. Rev. B 76, 073101 (2007);

29. Fu-Ming Wang, Hui Liu, Tao Li, Shi-Ning Zhu, “Omnidirectional negative refraction with wide bandwidth introduced by magnetic coupling in a tri-rod structure”, Phys. Rev. B 76, 075110 (2007);

30. T. Li, H. Liu, F.M. Wang, J.Q. Li, Y.Y. Zhu, and S.N. Zhu, “Surface-plasmon-induced optical magnetic response in perforated trilayer metamaterial”, Phys. Rev. E 76, 016606 (2007);

31. T Li, JQ Li, FM Wang, QJ Wang, H Liu, SN Zhu, and YY Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures”, Appl. Phys. Lett. 90, 251112 (2007);

32. F.M. Wang, H. Liu, T. Li, Z.G. Dong,S.N. Zhu, and X. Zhang, “Metamaterial of rod pairs standing on gold plate and its negative refraction property in the far-infrared frequency regime”, Phys. Rev. E 75, 016604 (2007);

33. MH Lu, C Zhang, L Feng, J Zhao, YF Chen, YW Mao, J Zi, YY Zhu, SN Zhu, NB Ming, “Negative birefraction of acoustic waves in a sonic crystal”, Nature Materials. 6, 744 (2007).

34. H. Liu, D.A. Genov, D.M. Wu, Y.M. Liu, Z.W. Liu, C. Sun, S.N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic Nanostructures”, Phys.Rev. B.76, 073101( 2007)

35. Dong ZG, Lei SY, Li Q, Xu MX, Liu H, Li T, Wang FM, Zhu SN, “Non-left-handed transmission and bianisotropic effect in a pi-shaped metallic metamaterial”, Phys. Rev. B 75, 075117 (2007).

36. L Feng, X. P. Liu, M.H. Lu, Y.B. Chen, Y.F. Chen, Y.W. Mao, J. Zi, Y.Y. Zhu, S.N. Zhu, N.B. Ming, “Acoustic Backward-Wave Negative Refractions in the Second Band of a Sonic Crystal”, Phys. Rev. Lett. 96, 014301(2006).

37. F. Wang , S.N. Zhu, K.F. Li and K.W. Cheah, “Third-harmonic generation in a one-dimensional photonic-crystal-based amorphous nanocavity”, Appl. Phys. Lett. 88, 071102(2006).

38. P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H.T. Wang, S.N. Zhu, N.B. Ming, “Anomalous Infrared Transmission of Gold Films on Two-Dimensional Colloidal Crystals”, Advanced Materials 18, 1612(2006).

39. XP Liu, MH Lu, YB Chen, YF Chen, YW Mao, J Zi, YY Zhu, S. N. Zhu, and N.B. Ming, “Refraction control of acoustic waves in a square-rod-constructed tunable sonic crystal”, Phys. Rev. B 73, 193101 (2006).

40. J Wang, ZB Gu, MH Lu, D Wu, CS Yuan, ST Zhang, YF Chen, SN Zhu, and YY Zhu, “Giant magnetoresistance in transi --tion-metal-doped ZnO films”, Appl. Phys. Lett. 88, 252110(2006).

41. Z.D. Gao, S.N. Zhu, Shih-Yu Tu, A.H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalite”, Appl.Phys.Lett. 89, 181101(2006).

42 Y.B. Yu, Z. D. Xie, X. Q. Yu, H. X. Li, P. Xu, H. M. Yao, and S. N. Zhu, “Generation of three-mode continuous-variable entanglement by cascaded nonlinear interactions in a quasiperiodic superlattice”, Phys.Rev. A 74, 042332 (2006).

43. Y. Zhang, Z. Qi, W. Wang, and S. N. Zhu, “Quasi-phase-matched Čerenkov second-harmonic generation in a hexagonally poled LiTaO3 waveguide”, Appl. Phys. Lett. 89, 171113 (2006).

44. H. Liu, D.A. Genov, D.M. Wu, Y.M. Liu,J.M. Steele, C. Sun, S.N. Zhu, X. Zhang,“Magnetic Plasmon Propagation Along a Chain of Connected Subwavelength Resonators at Infrared Frequencies”, Phys. Rev. Lett. 97, 243902 (2006).

45. T. Li, H. Liu, F.M. Wang, Z.G. Dong, and S.N. Zhu, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission”, Optics Express 14, 11155(2006)

46. H. Liu, S.N. Zhu, Y.Y. Zhu, Y.F. Chen, N.B. Ming and X. Zhang, “Piezoelectric- piezomangetic multilayer with simultaneously negative permeability and permittivity”, Appl. Phys. Lett. 86, 102904(2005);

47. H. Liu, S.N. Zhu, Z.G. Dong, Y.Y. Zhu, Y. F. Chen, N. B. Ming and X. Zhang, “Coupling of electromagnetic waves and superlattice vibrations in a piezomagnetic superlattice: Creation of a polariton through the piezomagnetic effect”, Phys. Rev. B 71, 125106(2005);

48.P. Zhan, J.B. Liu, W. Dong, Z. Chen, Z.L. Wang, Y. Zhang, S.N. Zhu, N.B. Ming, “Reflectivity behavious of two-dimensional ordered array of metallodielectric composite particles at large incidence angles”, Appl. Phys. Lett. 86, 051108(2005);

49.P. Xu, S.N. Zhu, X.Q. Yu, et al., “Experimental studies of enhanced Raman scattering from a hexagonally poled LiTaO3 crystal”, Phys.Rev. B 72, 064307(2005);

50.Z. G. Dong, F.Y. Wang, Y.X. Fan, P. Lu, S.N. Zhu etal., “Nd-doped GdVO4 films prepared by pulsed-laser deposition on SiO/Si substrate”, Appl. Phys. Lett. 86, 151908(2005);

51.Z.G. Dong, S.N. Zhu and Liu Hui, “Numerical simulations of negative-index refraction in wedge-shaped metamaterials”, Phys. Rev. E 72, 016607 (2005);

52. P. Xu, S.H. Ji, S.N. Zhu, X.Q. Yi, J. Sun, H.T. Wang, J.L. He, Y.Y. Zhu, and N.B.Ming, “Conical Second Harmonic Generation in a Two-Dimensional (2) Photonic Crystal: A Hexagonally Poled LiTaO3 Crystal”, Phys.Rev.Lett. 93, 133904(2004);

53. X.P. Hu, X. Wang, J. L. He, Y. X. Fan, S.N. Zhu, H.T. Wang, Y.Y. Zhu, and N.B. Ming, “Efficient generation of red light by frequency doubling in a periodically-poled nearly-stoichiometric LiTaO3 crystal”, Appl.Phys.Lett.85, 188(2004);

54. P. Xu, K. Li, G. Zhao, S.N. Zhu, Y. Du, S.H. Ji, Y.Y. Zhu and N.B. Ming, “Quasi-phase-matched generation of tunable bluelight in a quasi-periodic structure”, Opt.Lett.29, 95(2004);

55. X.J. Zhang, Y.Q. Lu, Y.Y. Zhu, Y.F. Chen, S.N. Zhu, “Phonon-polaritons in quasi-periodic piezoelectric superlattice”, Appl. Phys. Lett. 85, 3531(2004);

56. G.D. Xu, Y.H. Wang, Y.Y. Zhu, S.N. Zhu, N.B. Ming, “Third-harmonic generation in a LiTaO3 channel waveguide with a quasi-periodic grating”, J. Opt. Soc. Am B 21, 568(2004);

57. Q. Qin, H. Lu, S.N. Zhu, C.S. Yuan, Y.Y. Zhu, and N.B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films”, Appl. Phys. Lett. 82, 4654(2003);

58. J. L. He, J. Liao, H. Liu, J. Du, F. Xu, H.T .Wang, S.N. Zhu, Y.Y. Zhu, and N.B. Ming, “Simultaneous cw red, yellow, and green light generation, “traffic signal light,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3”, Appl. Phys. Lett. 83, 228(2003);

59. J. Liao, J.L. He, H. Liu, H.T. Wang, S.N. Zhu, Y.Y. Zhu, and N.B. Ming, “Simultaneous generation of red, green, and blue quasi-continuous-wave coherent radiation based on multiple quasi-phase-matched interactions from a single, aperiodically-poled LiTaO3”, Appl. Phys. Lett. 83, 3159(2003);

60. Y.Y. Zhu, X.J. Zhang, Y.Q. Lu, Y.F. Chen, S.N. Zhu, and N.B. Ming, “New Type of Polariton in a Piezoelectric Superlattice”, Phys.Rev.Lett. 90, 053903(2003);

61. G.D. Xu, T.W. Ren, Y.H Wang, Y.Y. Zhu, S.N. Zhu and N.B. Ming, “Third-harmonic generation using focused Gaussian beams in an optical superlattice”, J. Opt. Soc. Am. B 21, 360-365 (2003).

62. Y. Du, S.N. Zhu, Y.Y. Zhu, P. Xu, C. Zhang, Y.B. Chen, Z.W. Liu, and N.B. Ming, “Parametric and cascaded parametric interactions in a quasiperiodic optical superlattice”, Appl. Phys. Lett. 81, 1573(2002);

63. H. Liu, S.N. Zhu, Y.Y. Zhu, N.B. Ming, X.C. Lin, W.J. Ling, A.Y. Yao, andZ.Y. Xu, “Multiple-wavelength second-harmonic generation in aperiodic optical superlattices”, Appl. Phys. Lett. 81, 3326(2002).

64. Z.W. Liu, Y. Du, J. Liao, S.N. Zhu, Y.Y. Zhu, Y.Q. Qin, H.T. Wang, J.L. He, C. Zhang, and N.B. Ming, “Engineering of a dual-periodic optical superlattice used in a coupled optical parametric interaction”, J. Opt. Soc. Am. B 19, 1676(2002).

65. G.Z. Luo, S.N. Zhu, J.L. He, Y.Y. Zhu, H.T. Wang, Z.W. Liu, C. Zhang and N.B. Ming, “Simultaneously efficient blue and red light generations in a periodically poled LiTaO3”, Appl. Phys. Lett. 78, 3006(2001).

66. H. Liu, Y.Y. Zhu, S.N. Zhu, C. Zhang, and N.B. Ming, “Aperiodic optical superlattices engineered for optical frequency conversion”, Appl. Phys. Lett. 79, 728(2001).

67. Y.B. Chen, C. Zhang, Y.Y. Zhu, S.N. Zhu, H.T. Wang, and N.B. Ming, “Optical harmonic generation in a quasi-phase-matched three-component Fibonacci superlattice LiTaO3”, Appl. Phys. Lett. 78, 577(2001).

68. C. Zhang, H. Wei, Y.Y. Zhu, H.T. Wang, S.N. Zhu, and N.B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice”, Optics Letters 26, 899(2001).

69. C. Zhang, Y.Y. Zhu, S.X. Yang, Y.Q. Qin, S.N. Zhu, Y.B. Chen, H. Liu, and N.B. Ming, “Crucial effects of coupling coefficients on quasi-phase-matched harmonic genereation in an optical superlattice”, Optics Letters 25, 436(2000).

70. S.N. Zhu, Y.Y. Zhu, Y.Q. Lu, and B.N. Ming, Invited review paper: “Ferroelectric superlattice: Materials and Applications”, Phase Transition 72, 239(2000).

71.Y.Q. Qin, Y.Y. Zhu, S.N. Zhu and N.B. Ming, “Nonlinear optical characterization of a generalized Fibonacci optical superlattices”, Appl. Phys. Lett.75, 448(1999).

72. Y.Q. Lu, Y.Y. Zhu, Y.F. Chen, S.N. Zhu, N.B. Ming and Y.J. Feng, “Optical properties of an ionic-type phonic crystal”, Science 284, 1822(1999).

73. S.N. Zhu, Y.Y. Zhu and N.B. Ming, “Quasi-Phase-Matched Third Harmonic Generation in a Quasi- Periodic Optical Superlattice”, Science 278, 843-846 (1997).

74. S.N. Zhu, Y.Y. Zhu, Y.Q. Qin, H.F. Wang, C.Z. Ge, and N.B. Ming, “Experiment Realization of Second Harmonic Generation in a Fibonacci Optical Superlattice of LiTaO3”, Phys. Rev. Lett. 78, 2752-2755 (1997).

75. S.N. Zhu and W.W. Cao, “Direct Observation of Ferroelectric Domains in LiTaO3 Using Environmental Scanning Electron Microscopy”, Phys. Rev. Lett. 79, 2558-2561(1997).

76. Y.F. Chen, S.N. Zhu, Y.Y. Zhu, N.B. Ming, B.B. Jin and R.X. Wu, “High-frequency resonance in acoustic superlattice of periodically poled LiTaO3”, Appl. Phys. Lett 70, 592(1997).

77. S.N. Zhu, Y.Y. Zhu, J.M. Liu, Z.Y. Zhang, H. Shu, J.F. Hong, C.Z. Ge, Z.S. Lin, N.B. Ming, “Epitaxial Ba2NaNb5O15 thin film by pulsed laser deposition and its waveguide properties”, Optics Letters 20, 291(1995).

78. S.N. Zhu, Y.Y. Zhu, Z.J. Yang, H.F. Wang, Z.Y. Zhang, J.F. Hong, C.Z. Ge, N.B. Ming, “Second-harmonic generation of blue light in a bulk periodically poled LiTaO3”, Appl. Phys. Lett. 67, 320(1995).

79. S.N. Zhu, Y.Y. Zhu, Z.Y. Zhang, H. Su, H.F. Wang, J.F. Hong, C.Z. Ge, N.B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field”, J. Appl. Phys. 77, 5481(1995).

80. Y.Y. Zhu, S.N. Zhu, Z.Y. Zhang, H. Su, J.F. Hong, C.Z. Ge, N.B. Ming, “Formation of single-domain layers in multidomain LiNbO3 crystals by proton exchange and rapid heat treatment”, Appl.Phys.Lett.66, 408(1995).

二、國內(nèi)學(xué)術(shù)刊物上發(fā)表的部分論文:

1 基于光學(xué)超品格的準(zhǔn)白光激光器 胡小鵬; 祝世寧 激光與光電子學(xué)進(jìn)展 2009-02-10

2 用二維傅里葉變換方法評價光學(xué)超晶格的極化質(zhì)量 呂新杰; 趙麗娜; 陸駿; 趙剛; 劉輝; 秦亦強; 祝世寧 第15屆全國晶體生長與材料學(xué)術(shù)會議論文集 2009-11-06

3 聲學(xué)超晶格材料及其聲學(xué)和光學(xué)效應(yīng) 陳延峰; 朱永元; 陸延青; 張學(xué)進(jìn); 祝世寧; 閔乃本 TFC’03全國薄膜技術(shù)學(xué)術(shù)研討會論文摘要集 2003-09-01

4 化學(xué)計量比LiNbO_3晶體的生長及特性研究 孫敦陸; 杭寅; 張連瀚; 祝世寧; 王愛華; 殷紹唐 中國硅酸鹽學(xué)會2003年學(xué)術(shù)年會論文摘要集 2003-06-30

5 小型化、高增益準(zhǔn)相位匹配介質(zhì)中的OPCPA 梁曉燕; 趙寶真; 冷雨欣; 杜鵑; 林禮煌; 李儒新; 徐至展; 祝世寧; 閔乃本 2004年全國強場激光物理會議論文集(二) 2004-11-01

6 近化學(xué)計量比鉭酸鋰晶體的生長和性能表征 杭寅; 張連翰; 王海麗; 何曉明; 何明珠; 祝世寧 第14屆全國晶體生長與材料學(xué)術(shù)會議論文集 2006-11-01

7 用固體NMR方法研究LiNbO_3中的雜質(zhì)氫 于堯; 顧民; 王翔; 祝世寧; 杭寅 第十三屆全國波譜學(xué)學(xué)術(shù)會議論文摘要集 2004-08-01

8 非周期光學(xué)超晶格中的高次諧波產(chǎn)生 劉輝; 祝世寧; 宋永元; 閔乃本 第五屆全國光學(xué)前沿問題研討會論文摘要集 2001-10-01

9 準(zhǔn)周期光學(xué)超晶格研究新進(jìn)展及應(yīng)用 張超; 朱永元; 祝世寧; 閔乃本 第五屆全國光學(xué)前沿問題研討會論文摘要集 2001-10-01

10 鐵電疇調(diào)制晶體中糾纏光子空間關(guān)聯(lián)特性的研究 喻小強; 徐平; 謝臻達(dá); 王俊峰; 冷晗陽; 趙建士; 祝世寧 第十三屆全國量子光學(xué)學(xué)術(shù)報告會論文摘要集 2008-07-01

11 利用級聯(lián)二階非線性相互作用產(chǎn)生四模連續(xù)變量糾纏 王俊鋒; 徐平; 喻小強; 謝臻達(dá); 冷晗陽; 趙建士; 祝世寧 第十三屆全國量子光學(xué)學(xué)術(shù)報告會論文摘要集 2008-07-01

12 基于PPLT晶體的瓦級中紅外光參量振蕩器研究 呂新杰; 趙剛; 李桂君; 高志達(dá); 胡小鵬; 潘淑娣; 祝世寧 中國科學(xué)(G輯:物理學(xué) 力學(xué) 天文學(xué)) 2009-11-15

13 聲子晶體中第二能帶的回波負(fù)折射 盧明輝; 馮亮; 劉小平; 陳延彬; 陳延峰; 毛一薇; 資劍; 朱永元; 祝世寧; 閔乃本 物理 2006-11-12

14 基于周期極化LiTaO_3晶體的高增益簡并啁啾脈沖參量放大 姜永亮; 趙保真; 梁曉燕; 冷雨欣; 李儒新; 徐至展; 胡小鵬; 祝世寧 物理學(xué)報 2007-05-15

15 你知道介電體超晶格嗎? 祝世寧; 陸延青 實驗室研究與探索 2007-06-15

16 介電體超晶格的研究 閔乃本; 朱永元; 祝世寧; 陸亞林; 陸延青; 陳延峰; 王振林; 王慧田; 何京良 物理 2008-01-12

17 金屬/介電魚網(wǎng)結(jié)構(gòu)中磁等離極化激元的研究 李濤; 劉輝; 祝世寧 激光與光電子學(xué)進(jìn)展 2008-02-10

18 基于光學(xué)超晶格和全固態(tài)激光技術(shù)的準(zhǔn)白光激光器 胡小鵬; 祝世寧 物理學(xué)進(jìn)展 2008-06-20

19 化學(xué)計量比LiNbO_3晶體的光折變損傷閾值測定 孫敦陸; 杭寅; 張連瀚; 祝世寧; 張慶禮; 王愛華; 殷紹唐 光電子•激光 2003-04-25

20 準(zhǔn)相位匹配周期極化鉬酸釓制備及倍頻效應(yīng) 袁清習(xí); 任鐵未; 徐軍; 潘守夔; 朱永元; 祝世寧 光學(xué)學(xué)報 2003-07-17

21 壓電體超晶格中的新型極化激元 張學(xué)進(jìn); 宣曉峰; 陸延青; 朱永元; 陳延峰; 祝世寧; 閔乃本 物理 2003-11-24

22 封面說明 徐平; 季帥華; 祝世寧 物理 2005-06-12

23 高濃度摻Er~(3+)鈮酸鋰晶體的光譜參數(shù)計算 孫敦陸; 張慶禮; 王愛華; 杭寅; 張連瀚; 錢小波; 祝世寧; 殷紹唐 光譜學(xué)與光譜分析 2005-09-30

24 綠光抽運準(zhǔn)周期光學(xué)超晶格產(chǎn)生紅光與藍(lán)光的研究 徐平; 趙剛; 杜燕; 祝世寧; 朱永元; 閔乃本 光學(xué)學(xué)報 2004-07-17

25 連續(xù)漸變周期的一維光子帶隙結(jié)構(gòu)全能反射器 湯亮; 袁長勝; 陳延峰; 祝世寧 光子學(xué)報 2004-05-25

26 化學(xué)計量比LiNbO_3晶體的激光顯微拉曼光譜研究 孫敦陸; 仇懷利; 杭寅; 張連瀚; 祝世寧; 王愛華; 殷紹唐 物理學(xué)報 2004-07-12

27 摻鎂近化學(xué)計量比LiNbO_3晶體的生長 王海麗; 杭寅; 張連瀚; 祝世寧; 徐軍 無機材料學(xué)報 2004-09-20

28 K_2O助溶劑提拉法和富鋰提拉法生長的近化學(xué)計量比LiNbO_3晶體性質(zhì)的比較 王海麗; 杭寅; 張連瀚; 祝世寧; 徐軍 人工晶體學(xué)報 2005-02-28

29 與準(zhǔn)Λ型四能級系統(tǒng)互作用光場的熵演化 周青春; 祝世寧 物理學(xué)報 2005-03-12

30 Λ型三能級原子與數(shù)態(tài)單模光場互作用系統(tǒng)的糾纏特性 周青春; 祝世寧 物理學(xué)報 2005-05-12

31 鐵電疇的環(huán)境掃描電子成像術(shù) 祝世寧; 劉照偉; 曹文武 物理 1999-12-24

32 助熔劑提拉法生長化學(xué)計量比LiNbO_3晶體 孫敦陸; 杭寅; 張連瀚; 錢小波; 李世峰; 徐軍; 羅國珍; 祝世寧; 朱永元; 林培江; 洪榮華; 鄧棠波 人工晶體學(xué)報 2002-06-30

33 化學(xué)計量比LiNbO_3晶體的疇結(jié)構(gòu)及完整性研究 孫敦陸; 杭寅; 張連瀚; 錢小波; 李世峰; 徐軍; 羅國珍; 祝世寧; 朱永元; 周圣明 人工晶體學(xué)報 2002-08-30

34 準(zhǔn)位相匹配材料研究新進(jìn)展及應(yīng)用 張超; 朱永元; 祝世寧; 閔乃本 物理 2002-02-24

35 廣義菲波那契光學(xué)超晶格的非線性光學(xué)性質(zhì)(英文) 劉輝; 秦亦強; 朱永元; 祝世寧; 閔乃本 南京大學(xué)學(xué)報(自然科學(xué)版) 2000-01-30

36 BBO四倍頻全固態(tài)Nd:YVO_4紫外激光器 何京良; 盧興強; 賈玉磊; 滿寶元; 祝世寧; 朱永元 物理學(xué)報 2000-10-12

37 離子型聲子晶體的光學(xué)性質(zhì) 陸延青; 朱永元; 陳延峰; 祝世寧; 閔乃本; 馮一軍 物理 2000-04-24

38 離子型聲子晶體中的長波光學(xué)性質(zhì) 陸延青; 朱永元; 陳延峰; 祝世寧; 閔乃本; 馮一軍 材料研究學(xué)報 2001-02-25

39 準(zhǔn)周期三倍頻超晶格的結(jié)構(gòu)設(shè)計與實驗驗證 張超; 魏洪; 朱永元; 王慧田; 祝世寧; 閔乃本 材料研究學(xué)報 2001-02-25

40 周期極化LiTaO_3的準(zhǔn)連續(xù)倍頻 梁曉燕; 侯瑋; 汪家升; 許祖彥; 劉輝; 祝世寧 中國激光 2001-04-25

41 倍頻、自倍頻光學(xué)超晶格LN、LT晶體及應(yīng)用研究 祝世寧 材料導(dǎo)報 2001-02-15

42 一種制備LiNbO_3周期性疇反轉(zhuǎn)的新方法 張志勇; 朱永元; 祝世寧; 舒紅; 王海峰; 洪靜芬; 康琳; 閔乃本 人工晶體學(xué)報 1995-02-28

43 脈沖激光淀積制備LiTaO_3光波導(dǎo)薄膜的研究 劉俊明; 劉治國; 吳狀春; 祝世寧; 張明生; 馮端 自然科學(xué)進(jìn)展 1996-02-15

44 質(zhì)子交換鉭酸鋰晶體電疇反轉(zhuǎn)和居里溫度關(guān)系的研究 張志勇; 朱永元; 顧民; 祝世寧; 李昀; 秦亦強; 閔乃本 自然科學(xué)進(jìn)展 1996-10-15

45 單個準(zhǔn)分子激光脈沖和位相光柵模板制作表面周期結(jié)構(gòu) 駱桂蓬; 王牧; 祝世寧; 陸延青; 劉治國; 韋鈺; 吳海明; 韋鈺; 閔乃本 科學(xué)通報 1997-07-23

46 準(zhǔn)周期鐵電光學(xué)超晶格多波長二次諧波的產(chǎn)生 秦亦強; 王海峰; 祝世寧; 朱永元; 閔乃本 物理 1997-12-24

47 準(zhǔn)周期LiTaO_3光學(xué)超晶格及其三倍頻效應(yīng) 祝世寧; 朱永元; 閔乃本 物理 1998-10-24

48 Ba_2NaNb_5O_(15)晶體低溫的異常性能 許自然; 祝世寧; 張杏奎; 徐秀英 人工晶體學(xué)報 1993-12-31

49 用電阻法研究氧在YBa_2Cu_3O_(7-x)中的擴散 祝世寧; 張杏奎; 許自然 低溫物理學(xué)報 1990-06-30

50 鈮酸鋇鈉(BNN)高、低溫相變的研究 許自然; 祝世寧; 徐秀英; 張杏奎 人工晶體學(xué)報 1991-12-31

資料更新中......

榮譽獎勵:

1.獲國家“863計劃”十五周年先進(jìn)個人(重要貢獻(xiàn))、98年度香港“求是”杰出青年學(xué)者。

2.獲第五屆南京市十大科技之星等榮譽稱號。

3.2006年獲國家自然科學(xué)一等獎。

資料更新中.......


 

文章錄入:zgkjcx    責(zé)任編輯:zgkjcx 
  • 上一篇文章:

  • 下一篇文章:
  •  
    名稱:科技創(chuàng)新網(wǎng) 工信部備案號:京ICP備13040577號-2 京公網(wǎng)安備11010802045251號
    版權(quán)所有:未經(jīng)授權(quán)禁止復(fù)制或建立鏡像 E-Mail:zgkjcx08@126.com
    亚洲熟女一区二区三区,亚洲毛片不卡aV在线播放一区,久久免费视频影视,国产精品尤物在线不卡